Холодный ядерный синтез новости последние

Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. При «обычной» термоядерной реакции для сближения ядер рабочего вещества необходима температура в миллионы градусов. Холодный же ядерный синтез при достижении аналогичного результата не предполагает сильного нагревания. Но в любом случае, то, что в исследованиях лаборатории «Протон-21» мы имеем дело именно с холодным синтезом, не вызывает сомнений. Также не вызывает сомнений, что в деле конструирования сверхтяжелых элементов холодный синтез значительно обошел «горячий».

Холодный синтез. Миф или лженаука?

Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. Это движение, по большей части, является воскрешением холодного синтеза – недолго существовавшего в 1980-х явления, связанного с получением ядерного синтеза в простом настольном электролитическом устройстве, которое учёные быстро отмели. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных).

Холодный ядерный синтез: мы сразу пошли своим путём

Слева — простейшая реакция термоядерного синтеза с использованием дейтерия и трития тяжелого водорода. Справа — схема токамака. В большинстве экспериментальных термоядерных реакторов используется советская конструкция в форме пончика, называемая токамаком. В такой установке используются мощные магнитные поля, чтобы удерживать облако плазмы или ионизированного газа при экстремальных температурах, достаточно высоких, чтобы атомы могли сливаться вместе. И, если все получится, SPARC станет первым устройством на Земле, достигшем состояния «горящей плазмы», при котором тепло от всех термоядерных реакций поддерживает термоядерный синтез без необходимости добавления в систему дополнительной энергии. И как раз тот факт, что никому никогда не удавалось использовать силу горящей плазмы в контролируемой реакции здесь, на Земле, требует проведения дополнительных исследований, прежде чем SPARC сможет начать работать. Строительство проекта SPARC, запущенного в 2018 году, планируется начать в июне следующего года, а сам реактор может заработать в 2025 году. Это намного раньше, чем крупнейший в мире проект термоядерной энергетики, известный как Международный термоядерный экспериментальный реактор ITER : он был задуман в 1985 году, в 2007 году началось проектирование, и, хотя строительство стартовало в 2013 году, ожидается, что первая термоядерная реакция в нем будет проведена в лучшем случае к 2035 году. В SPARC будут использоваться так называемые высокотемпературные сверхпроводящие магниты, которые стали коммерчески доступными только в последние три-пять лет — ощутимо позже, чем был спроектирован ИТЭР и началось его строительство.

Для сравнения, сила магнитного поля Земли колеблется от 30 до 60 миллионных долей тесла.

Использовались также газоразрядные счетчики на гелии-3 в нейтронных детекторах 7. Причем детекторы для гамма-излучения и для нейтронов дублировались, например, для регистрации нейтронов применялось до 15 счетчиков в одном нейтронном детекторе. Поэтому регистрационная система была очень четкой и надёжной, с высокой разрешающей способностью по нейтронам и по гамма-излучению. Синхронное срабатывание двух независимых друг от друга датчиков означало, что регистрируются не случайные артефакты, а действительно нейтроны и гамма-излучение. Первый реактор для получения реакций холодного ядерного синтеза на дейтерированном титане, сконструированный в СФ НИКИЭТ в 1989 году В нержавеющую трубку с внутренним диаметром 10 мм был помещен образец гидрида титана цилиндрической формы диаметром 9,5 мм 1 и длиной 70 мм. В трубку с двух сторон были вставлены хромель-алюмелиевые ХА термопары в герметичном нержавеющем корпусе диаметром 1,5 мм 6, 7. Весь титановый образец снаружи трубки был окружен со всех сторон калориметром Пельтье 2 , который был сделан на основе хромель-алюмелиевых термопар.

Калориметр был откалиброван по независимому источнику тепла, для чего вместо титанового образца вставлялся макет из нихромового нагревателя, на который подавался ток, измерялось напряжение, рассчитывалась его потребляемая мощность. Мы измеряли реакцию калориметра на такой нагрев и таким образом откалибровали его по избыточному теплу при рабочих температурах. Причем обведённые на графике буквы «n» показывают моменты синхронного срабатывания двух датчиков нейтронов, расположенных напротив друг друга. Между датчиками находилась система «титан-дейтерий». Полученные весной 1989 года экспериментальные результаты однозначно доказали, что явление холодного ядерного синтеза существует, причём не только в системе «палладий — дейтерий», с которой работали Флейшман и Понс. Мы занимались насыщением из газовой фазы титана. Наша идея состоялась в том, что все эти реакции идут в тех металлах и сплавах, которые поглощают и выделяют дейтерий. То есть мы этот реактор делали для того, чтобы получить следующий цикл: насыщение дейтерием, потом дегазация дейтерида титана — откачка, и на откачке также регистрировали нейтроны и гамма-излучение.

Изменение давления, температуры титанового образца и потока тепла Тут начинается самое интересное. Если сравнить тепловой поток от образца титана при насыщении титана дейтерием и во время дегазации дейтерида титана — откачки, то есть выхода дейтерия из титана, то отношение выделившегося тепла при насыщении к затраченному теплу при откачке составит около двух 1,96. Таким образом, при поглощении дейтерия выделяется много тепла, а при его откачке тепло поглощается, но в меньшем количестве. Это первая работа, которая показала, что при насыщении титана дейтерием получается избыточное тепло, которое выделяется при образовании гидрида титана и сопровождающей его реакции ядерного синтеза. Максимальное выделение тепла в первом цикле экспериментов достигало 39,3Вт. Значение не очень высокое, но оно было получено, надёжно зарегистрировано и хорошо посчитано. По результатам этих работ мы сделали две заявки на авторские свидетельства на способ осуществления реакции низкотемпературного ядерного синтеза, который осуществлялся насыщением и дегазацией. У нас была гипотеза, что при высоком насыщении титана дейтерием, в дейтериде титана происходят фазовые переходы, а при фазовых переходах меняется структура кристаллической решетки титана.

И мы в наших первых работах пытались это проверить. Именно на такой способ реализации реакции ядерного синтеза с помощью фазового перехода из бета-фазы в гамма-фазу и обратно мы подали заявку на авторское свидетельство. Далее на основании этого способа была разработана заявка «Реактор ядерного синтеза». В этой заявке уже предлагалось систему «титан — дейтерий» помещать под ядерный реактор под поток нейтронов, чтобы интенсифицировать реакции синтеза и получить больше тепла. В списке авторов реферата первой статьи, подготовленной к публикации, была представлена команда, которая начинала этим заниматься: Буньков В. Реферат статьи «Экспериментальная идентификация реакции низкотемпературного синтеза в системе Ti-D» 1989 года Вопреки заверениям специалистов по термоядерному синтезу, что участники этого исследования должны были переоблучиться нейтронами, многие из этих людей живы до сих пор и активно работают, и лишь некоторые из них умерли в преклонном возрасте, при этом один из них был ликвидатором Чернобыльской аварии. Затем мы сделали работу по определению инициирования реакций ядерного синтеза в дейтериде титана при воздействии лазерного излучения. Для этого была разработана следующая схема.

Был сделан реактор с кварцевым окошком, в этот реактор помещался образец дейтерида титана. Затем из реактора откачивался воздух и создавалась атмосфера дейтерия с давлением 14 атмосфер. Через кварцевое окошко импульсным лазером воздействовали на торец образца внутри реактора, при этом регистрировали нейтроны и гамма-излучение. В сентябре 1991 года результаты этой работы были опубликованы в журнале Американского ядерного общества Fusion Technology. В то время редактором этого журнала был Джордж Майли, который нам и предложил опубликовать статью. Обложка сентябрьского номера журнала Fusion Technology и первая страница статьи «Laser-induced cold nuclear fusion in Ti-H2-D2-T2 compositions» В конце этой статьи сделаны расчеты создания на основе гамма-излучения, которое мы регистрировали в эксперименте, гамма-лазера. Имею специализацию «Физика ядерных реакторов». Закончил физико-технический факультет Уральского политехнического института в Свердловске в 1982 году.

У меня был защищен диплом по теме «Исследование термического разложения облученных и необлученных полиимидов». Имею две специализации: физика ядерных реакторов и разделение изотопов.

В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание».

Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения. При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон.

Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди.

Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной.

Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона. Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона.

Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов.

Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т.

Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм.

Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция. На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство.

Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см. Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С.

Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов.

В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А. Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные.

К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад.

Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли. Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента.

Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона. А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома. Появившиеся в результате распадов нейтральных ядер замкнутые вихроны, ранее входившие в состав внешних нейтральных оболочек, во внешнем пространстве, в результате каскадных распадов и взаимодействий с другими частицами на пути к поверхности, образует, в конечном итоге, стабильные электроны. Так образуются атомные ядра и свободные электроны.

В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента — положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй замкнутой частицей. Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям. Эта внешняя оболочка со структурой, показанной на фото 6, с замкнутым контуром в структуре атомного ядра и является той поверхностью, на которой пара магнитных монополей ГЭММ квантует на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрическим потенциалом. При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра — это и есть электрический эфир с положительным знаком заряда.

Таким уже объёмным образом порождается, умножается и аккумулируется строительный материал из электрических зёрен-потенциалов, который в отличие от аккумуляции его в линейном треке фотона, порождает бесконечный объём, а количество этой субстанции пропорционально заряду массы ядра. Такой газоподобный электрический эфир удалось Н. Тесла захватить, преобразовать и отделить в кластере меди от электронов в своём резонансном трансформаторе и частично исследовать. Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента, бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра, мерилом которого является количество электронов на оболочках атома, противоположные по знаку внешние поля которых его полностью уничтожают.

В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу — процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты. Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, то есть процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета — минус — отрыв частицы с отрицательной полусферой. Образовавшиеся стабильные ядра имеют заряд электрического потенциала и спин, формируемые вихронами полусфер двух внешних оболочек — внешней и внутренней. Электрический заряд ядра создаётся волноводами магнитных монополей этих внешних вихронов, с частотой на три десятичных порядка больше, чем у электронных оболочек атомов.

Эти оболочки в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, создавая заряд ядра, который определяется количеством электронов в нейтральном атоме. Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000. Почему столько много радиоактивных нестабильных тяжёлых изотопов?

Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, то есть положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одно ядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада. Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет — это квантованные кластеры плотной чёрной ядерно-мезонной плазмы, то есть смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер.

Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и оболочечную структуру. Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых.

Большинство ядер имеют по несколько изотопов. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины. Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально. В основу структуры фото 9а атомного ядра положены экспериментальные результаты исследований по строение протона, гиперонов, резонансов, мезонов, экзотических частиц, мезоатомов и эта-ядер.

Время жизни резонансов порядка 10—22 сек. Первый нуклонный резонанс был открыт Э. Экзотическая частица Z 4430 — необычный мезон, не вписывающийся в стандартные рамки. Его существование было известно и раньше, но только сейчас стало окончательно доказано, что это реальная экзотическая частица.

Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия. Состояния этой частицы с энергиями были названы Zb 10610 и Zb 10650 в соответствии с их массами. В 1977 году были открыты нейтральные Y-мезоны ипсилон-мезоны с массами в диапазоне 9. Y-мезоны являются связанными состояниями из двух частиц с половиной массы Y 9460 , то есть 4700 МэВ.

Вы точно человек?

частицы вне ЭМП немедленно превращаются в атомы. Почему научные группы, финансируемые Google и фондами США и Канады, не смогли получить реакции холодного ядерного синтеза ни одним из известных способов. При этом Минэнергетики США объявило, что министр Дженнифер Гранхолм и замминистра по ядерной безопасности Джилл Хруби объявят о «крупном научном прорыве» в лаборатории во вторник, 13 декабря. Опыты по холодному ядерному синтезу проводятся и в нашей стране. Реакция синтеза в недрах нашей планеты. Внутреннее ядро Земли, согласно теории , железно-никелевый гидрид, пребывающий при температуре 5000-6000К и давлении 1,36 Мбар. Отличное видео, в котором рассказывается о текущем положении вещей на рынке холодного ядерного синтеза. Эфир, вечные двигатели, холодный ядерный синтез. Путин ООН природоподобные технологии.

Эфир, вечные двигатели, холодный ядерный синтез. Путин ООН природоподобные технологии

Учёные в США впервые в истории успешно провели реакцию ядерного синтеза. Как сообщают различные источники, учёные из Ливерморской национальной лаборатории Лоуренса в Калифорнии провели реакцию синтеза, получив больше энергии, чем было затрачено. Опыты по холодному ядерному синтезу проводятся и в нашей стране. Реакция синтеза в недрах нашей планеты. Внутреннее ядро Земли, согласно теории , железно-никелевый гидрид, пребывающий при температуре 5000-6000К и давлении 1,36 Мбар. На сегодняшний день, примерно через семь лет после публичного раскрытия компанией Lockheed проекта холодного синтеза, компания уже трудится над своим новым испытательным реактором "T4B". Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. И которую, в то же время, многие из них вполне серьёзно считают дурацкой затеей. С 1920-х годов появились предположения, что ядерный синтез может быть возможен при гораздо более низких температурах. Путём каталитического плавления водорода, поглощенного металлическим катализатором. Эта идея положила начало исследования холодного синтеза. Помимо этого, Солин пришел еще к одному открытию: при ядерной трансмутации (холодный ядерный синтез) не только наблюдается колоссальный выброс энергии, но и одни химические элементы преобразуются (трансмутируют) в другие.

Из Википедии — свободной энциклопедии

  • Содержание
  • Что такое Холодный ядерный синтез?
  • Холодный ядерный синтез. L E N R
  • Американская компания, возможно, совершила прорыв в холодном ядерном синтезе

Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип

Наука Одно из самых громких обещаний ядерной физики — это дешевая, чистая, обильная энергия. В то время как атомным электростанциям на основе деления приходится иметь дело с высокорадиоактивными материалами и конечными продуктами, а Солнце — источник ядерного синтеза — находится за 150 миллионов километров, на Земле процветает мечта создания домашнего реактора синтеза. Этот самый синтез, будь он «холодный» или LENR «низкоэнергетические ядерные реакции» , нам обещают с 1980-х годов. Якобы, он удовлетворит все наши потребности в энергии, как уже существующие, так и грядущие. Только вот никто еще не выводил работающее устройство холодного синтеза на рынок, не говоря уж о получении хоть какого-нибудь одобрения со стороны мирового сообщества. Что происходит? Если бы только Тони Старк существовал в реальности Возможет ли холодный синтез? В отличие от химических реакций, которые высвобождают энергию в электрон-вольтах эВ на атом, в котором протекают, ядерные реакции — вроде синтеза и деления — выпускают мегаэлектрон-вольты МэВ энергии на атом: в миллион раз больше. Самый мощный ядерный взрыв, который когда-либо гремел на Земле, в энергетическом эквиваленте был равен примерно массе яблока и был достаточно силен, чтобы уничтожить большой город целиком.

Эксперименты и теории, как правило, выдаются за чистую монету, чтобы не подливать масла в огонь критики извне, если уж кому-то за пределами группы заблагорассудится послушать. В этих условиях процветают психи, и тем хуже для тех, кто верит, что они занимаются серьезной наукой». Ядерный синтез, однако, протекает между заряженными частицами вроде атомных ядер, и барьер отталкивания таких зарядов весьма силен. Чтобы подвести два протона достаточно близко, чтобы они слились, потребуется температура в 4 миллиона Кельвинов, которая приведет к уже известному нам синтезу: горячему синтезу. По этой причине для зажигания ядерного синтеза в водородной бомбе, самом мощном оружии, придуманном людьми, необходима ядерная бомба. По части магнитного ограничения синтеза конфайнмента и инерциального конфайнмента, когда мощные магнитные поля или серия лазерных импульсов удерживают и сжимают плазму, заставляя ядра сливаться, за последние несколько десятилетий был достигнут определенный прогресс. В ходе этих реакций извлекается все больше и больше энергии, чем было затрачено на их запуск и поддержание, но мы все еще далеки от точки невозврата: когда в процессе реакции появляется намного больше энергии, чем было затрачено на запуск всей цепочки реакций. Если мы сможем достичь точки безубыточности, это будет настоящий прорыв, поскольку энергия синтеза чистая, не производит радиоактивных отходов, а топливо для нее дешевое и практически неограниченное.

Семихатов Алексей Михайлович доктор физико-математических наук, заведующий лабораторией, Физический институт им. Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи. Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза». Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером».

Бочвара Владимир Кащеев впервые публично рассказал об успешных результатах законченной еще в апреле государственной экспертизы новой уникальной технологии дезактивации жидких ядерных отходов. Суть технологии: в емкость с водным раствором радиоактивного изотопа цезия-137 главное «действующее лицо» в Чернобыле и Фукусиме, период полураспада которого составляет 30,17 лет добавляются специально подготовленные микробные культуры, в результате уже через 14 дней! То есть микробы способны поглощать радиоактивный цезий и каким-то образом превращать его в нерадиоактивный барий.

Корниловой, с удивлением узнали, что: открытие а это, безусловно, открытие трансмутации химических элементов в естественных биологических культурах было сделано еще в 1993 году, первый патент на получение мёсбауэровского изотопа железа-57 получен в 1995 году; результаты неоднократно были опубликованы в авторитетных международных и отечественных научных журналах; до выхода технологии на госэкспертизу было проведено 500 независимых проверок технологии в различных научных центрах; технология апробирована в Чернобыле на разных изотопах, то есть может быть настроена на любой состав изотопов конкретных жидких ядерных отходов; госэкспертиза имела дело не с изощренной лабораторной методикой, а с готовой промышленной технологией, которая не имеет аналогов на мировом рынке; более того, украинским физиком-теоретиком Владимиром Высоцким и его российским коллегой Владимиром Манько создана убедительная теория для объяснения наблюдаемых феноменов в рамках ядерной физики. Корниловой лежит идея, высказанная французским ученым Луи Кервраном в 60-е годы прошлого века. Она заключается в том, что биологические системы способны синтезировать из имеющихся компонентов критически важные для своего выживания микроэлементы или их биохимические аналоги. К таким микроэлементам относятся калий, кальций, натрий, магний, фосфор, железо и др. Объектами первых опытов, проведенных А. Корниловой, были культуры бактерий Bacillus subtilis, Escherichia coli, Deinococcus radiodurans. Их помещали в питательную среду, обедненную железом, но содержащую соль марганца и тяжелую воду D2O. Эксперименты показали, что в этой системе вырабатывался редкий мёссбауэровский изотоп железа-57. Определенным аргументом в пользу предлагаемой гипотезы служит тот факт, что когда в питательной среде тяжелую воду заменяли на легкую H2O или исключали соль марганца из ее состава, изотоп железа-57 не вырабатывался.

Было проведено более 500 опытов, в которых появление изотопа железа-57 было надежно установлено. Корниловой для биологического превращения цезия в барий, отсутствовали ионы калия — микроэлемента критически важного для выживания микроорганизмов. Барий является биохимическим аналогом калия, ионные радиусы которых очень близки.

Самые интересные ролики на Youtube Пролог Почему до сих пор мы используем традиционные источники энергии, когда уже много лет известны альтернативные источники сравнительно дешёвой энергии? Причин этому масса, как то: экономические, технические и даже политические. Но, начнём с самого начала.

Миллионы лет планета Земля с помощью всевозможных живых организмов перерабатывала углекислый газ в уголь, нефть и природный газ. Превращать все эти природный богатства обратно в углекислый газ оказалось сравнительно просто, достаточно было научиться использовать огонь. Собственно, этим человечество и занимается до сих пор. По мере развития науки и техники, появились преобразователи энергии, позволяющие использовать энергию воды, солнца, ветра, геотермальных источников и даже энергию морских волн. Но все эти преобразователи имеют ряд недостатков, и главный из них — это зависимость от сил природы. Попытки человечества обуздать энергию расщепляющегося атомного ядра до поры до времени имели успех, но оказались не менее опасными для природы, чем обычные тепловые электростанции.

Что же нас ждёт в будущем? В далёком будущем, нас ждут новые технологии получения энергии с помощью реакторов, так называемого, холодного ядерного синтеза. А в ближайшем будущем, нас в этом плане не ждёт ничего хорошего. Первое и основное препятствие этому — экономические интересы. Крупный капитал ведёт бизнес согласно своим стратегическим планам, в которых пока нет места для новых технологий. Глупо выводить деньги из бизнеса, когда доходы всё время растут, как на дрожжах.

Навигация по записям

  • Холодный ядерный синтез в клетках живого организма
  • Холодный ЯДЕРНЫЙ синтез ПРИЗНАЛИ учёные !!! - YouTube
  • Первый термоядерный реактор может заработать уже в 2025 году
  • Антиматерия, ядерный синтез и коровьи «лепешки»: ищем источники энергии будущего
  • Холодный ядерный синтез: holydiver_777 — LiveJournal

Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип

Первый шаг к "энергетическому плюсу" За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. Это стало возможным благодаря тому, что физики научились более точно концентрировать лазерные лучи на ядерном топливе и мешать их рассеиванию, что происходит в результате взаимодействий частиц света с молекулами газа, который охлаждает полую капсулу с тритием и дейтерием. Повышение давления и температуры внутри капсулы, как отметил Адамс, позволило научной команде NIF в начале декабря запустить самоподдерживающуюся термоядерную реакцию и впервые выйти в "энергетический ноль" при использовании подхода быстрого термоядерного синтеза. В данном случае, по словам Адамса, физикам удалось получить чуть больше энергии в ходе термоядерных реакций, чем содержали в себе лучи 190 лазеров, которые используются для сжатия капсулы с топливом внутри реактора. При этом ученые ожидают, что последующие совершенствования технологии фокусировки лазерных лучей помогут им вплотную приблизиться к решению этой задачи.

Энергия самого лазерного луча при этом составляет около 1 МДж. Представьте теперь цепочку падающих в лазерное перекрестье шариков с компонентами термоядерного топлива фактически миниатюрных водородных микробомбочек. И, соответственно, непрерывную цепочку микровзрывов… Даже сложно вообразить, как физикам удалось достичь синхронности работы этих лазеров и идеально равномерного обжатия мишени!

Совершенно справедливо администратор Нaциoнaльнoй администрации по ядерной безопасности NNSA Джилл Хруби назвала проведенный эксперимент «чудом инженерной мысли». Но вот придумали такую схему… в СССР. Идея инерциального термоядерного синтеза была сформулирована в 1962 году академиком Николаем Геннадьевичем Басовым и тогда еще не академиком Олегом Николаевичем Крохиным. Басов выступал на сессии Академии наук СССР и определил лазерный термояд как одно из направлений управляемого термоядерного синтеза. Он даже оценил, какая мощность лазера должна быть, чтобы зажечь термоядерную реакцию в этих условиях. Как раз 13 декабря, за день до 100-летнего юбилея Николая Басова, на заседании Президиума Российской академии наук, посвященном этой дате, академик, заместитель директора Российского федерального ядерного центра «ВНИИЭФ» по лазерно-физическому направлению Сергей Гаранин подчеркнул: «Фактически достигнуто зажигание термоядерного горючего. Эти результаты достигнутые на NIF.

Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле.

Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах. Пусть занимаются. Повторяю, это очень интересная физика.

Под этим словом ученые подразумевают установки, в которых термоядерная реакция протекает за миллионные доли секунды при сжатии термоядерного топлива, смеси из трития и дейтерия, при помощи набора из мощных лазеров. Эта технология сейчас активно разрабатывается на американском экспериментальном реакторе NIF. Первый шаг к "энергетическому плюсу" За последние два года физики, работающие с NIF, смогли в несколько раз повысить энергетическую эффективность "быстрого" термоядерного синтеза. Это стало возможным благодаря тому, что физики научились более точно концентрировать лазерные лучи на ядерном топливе и мешать их рассеиванию, что происходит в результате взаимодействий частиц света с молекулами газа, который охлаждает полую капсулу с тритием и дейтерием. Повышение давления и температуры внутри капсулы, как отметил Адамс, позволило научной команде NIF в начале декабря запустить самоподдерживающуюся термоядерную реакцию и впервые выйти в "энергетический ноль" при использовании подхода быстрого термоядерного синтеза.

Технология термоядерного синтеза, которая всегда находилась в отдалённой перспективе примерно, как полет на Марс , внезапно стала ближе. Да, это пока дорогостоящий эксперимент; да, установка пока потребляет больше энергии, чем вырабатывает; да, до практического применения открытия, как до Луны но уже не как до Марса! ХЯС — это практически безграничный источник энергии из воды, это «солнце в руках», это совершенно новый уровень технологических возможностей, о котором мечтали разве что фантасты. Казалось, что США безоговорочно вырвали победу в битве за термояд, и что они будут задавать тон в грядущем технологическом укладе. Вновь, как это уже случилось в 80-е после Великой кибернетической революции. Кто сумеет ответить на вызов?

Может быть, Китай — новый экономический гигант? Успехи Китая в области термоядерной энергетики несомненны и впечатляющи. По сообщениям китайских СМИ, ещё в 2021 году EAST, разработанный по советской технологии токамак HT-7U один из трёх крупнейших термоядерных реакторов в стране смог удержать разогретую до температуры 70 млн градусов плазму более 17 минут.

Мегаджоули управляемого термоядерного синтеза

до конца его не понимает никто), так и низкой осведомленностью о состоянии дел на данном направлении. «Опираясь на теорию Суперобъединения, исследователь создал антигравитационный квантовый двигатель (КвД) и запустил источник холодного [ядерного] синтеза на электрон-позитронной плазме. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. По утверждениям ученых, им удалось при комнатной температуре "заставить" два ядра дейтерия превратиться в ядро гелия.

Похожие новости:

Оцените статью
Добавить комментарий